This project moves from the IMTA approach towards an innovative self-sufficient integrated multi-trophic aquaponic system (SIMTAP) for small scale, labour-intensive and environmentally-friendly marine fish and halophytic plants production adapted to the typical socio-economic and climatic condition of Mediterranean areas. The main goal of SIMTAP is to define, design, set up and test an innovative food production system that drastically reduce, on one side, the required fish feed inputs (e.g., fishmeal, fish oil, soybean, etc.) and the consumption of resources (water, energy), and, on the other side, the production of waste and pollution, decreasing the Life Cycle impact on the environment of this segment of the food industry. Moreover, SIMTAP can be coupled with the re-use of the effluents from greenhouse soilless cropping systems, in a cascade effect acting both as a bioremediation of wastewater (run-off) from greenhouse cultivations, and as a recycling of the nutrients still contained in the same wastewater, thus helping the SIMTAP cycle. Besides, the water source can be either brackish or marine. Moreover, the project aims to evaluate the effectiveness and performance of SIMTAP systems in terms of food production and use of energy, water and other resources. Life Cycle Assessment (LCA), analysis of energy consumption and emergy assessment of SIMTAP will be performed to quantify and compare the potential environmental impacts with the conventional hydroponic and aquaculture systems. Another crucial issue of this project is the economic assessment: the identification of possible payment streams (e.g. emission certificate, etc.) to realize projects in a bankable form. This action and Life Cycle Cost (LCC) studies will be specifically linked to the technical proposal for achieving reasonable prized solutions for low-medium technological level countries.